جلسه نخستین مدار عملی تابلو روان را برای شما توضیح میدهم.جهت ارائه مناسب تر مطالب در کنار هر مدار من شماتیک آن مدار را که در نرم افزار Proteus طراحی نموده‌ام را که قابلیت شبیه سازی را نیز دارا میباشد، جهت دانلود در اختیار شما علاقمندان قرار دادم.

 

لیست قطعات مدار
-  میکروکنترلر ATmega8٭

- LED  قرمز 35 عدد

- مقاومت 330 اهمی 5 عدد

- سوکت 28 پین جهت میکرو ATmega8

- برد هزار سوراخ 15 در 10 سانتی متر

٭ قطعاتی که تعداد آنها مشخص نشده، مقدار آن یک عدد است.

٭جهت تهیه میکرو پروگرم شده اینجا کلیک کنید.

 

 

بله تمامی قطعات مورد نیاز جهت ساخت این مدار همین چند قطعه ذکر شده در لیست فوق میباشد. حال برای ساخت مدار بهتر است ابتدا ماتریس LED را بسازید. نقشه این ماتریس در تصویر زیر آورده شده :

 

شماتیک ماتریس LED ها جهت تابلو روان - طراحی شده توسط مهندس حسین لا چینی

 

همانطور که مشاهده میکنید در تصویر فوق من تمامی کاتد های LED های موجود در یک سطر را به هم و آندهای LED های موجود در یک ستون را به یکدیگر متصل کرده‌ام. حتما بعد از ساخت ماتریس و قبل از ادامه مونتاژ سایر قطعات ماتریس LED را توسط اعمال یک ولتاژ بین 3 تا 9 ولت به سطرها و ستون ها تست کنید تا از اتصال صحیح آن اطمینان حاصل کنید.

حال نوبت به نصب سوکت 28 پین میرسد، دلیل استفاده از سوکت، جلوگیری از صدمه دیدن میکرو کنترولر در حین لحیم کاری است و در عین حال به شما اجازه میدهد که از میکرو در پروژه های دیگر هم استفاده کنید. بعد از نصب سوکت به سراغ مقاومت های 330 اهمی رفته و آنها را به پین های صفر تا پنج Portd وصل نمایید و سر دیگر مقاومت ها را به ستون های ماتریس LED متصل نمایید. به نقشه زیر دقت کنید.

 

نقشه شماتیک تابلو روان طراحی شده با میکروکنترلر ATmega8 - طراح مهندس حسین لاچینی

 

همانطور که در نقشه نیز مشاهده میکنید. مقاومت R1 به ستون 1 و مقاومت R2 به ستون 2 و ... مقاومت R5 به ستون 5 ماتریس LED متصل میشود. حالا مدار شما کامل شده!!! و شما صاحب یک تابلو روان واقعی هستید! و پس پروگرم کردن میکرو میتوانید نتیجه کار خود را ببینید و لذت ببرید. البته این مدار جهت کار به ولتاژی بین 4.5 الی 5 ولت نیازمند است. در صورتی که از باطری کتابی و یا سایر منابع تغذیه که دارای ولتاژ بالاتر هستند و یا خروجی آنها تثبیت شده نیست استفاده میکنید. بهتر است تا از یک مدار رگولاتور ولتاژ استفاده نمایید. جهت ساخت مدار رگولاتور ولتاژ قطعات زیر را تهیه نمایید.

 

لیست قطعات مدار
-  آی سی رگولاتور ولتاژ 7805

- خازن 470 میکروفاراد 16 ولت 2 عدد

٭ قطعاتی که تعداد آنها مشخص نشده، مقدار آن یک عدد است.

 

 

مدار منبع تغذیه 5 ولتی جهت مدار تابلو روان - طراح مهندس حسین لاچینی

 

نقشه مدار رگولاتور ولتاژ را نیز در تصویر بالا مشاهده میکنید. من به شما توصیه میکنم که ابتدا مدار را موتتاژ کنید ولی خروجی آنرا به میکرو متصل نکنید. بلکه با اعمال یک ولتاژ بالای 8 ولت به ورودی های آن از و تست ولتاژ خروجی(که بایستی در حدود 5 ولت باشد) از عملکرد صحیح آن اطمینان حاصل نموده و سپس آنرا به پایه های میکرو کنترولر متصل نمایید.

اگر تابحال تمامی مراحل فوق را بدرستی انجام داده باشید اکنون مدار شما، مثل مدار من که در تصویر زیر نشان داده‌ام در آمده است.

 

برد مونتاژ شده تابلو روان طراحی شده با میکرو کنترولر ATmega8 - طراح مهندس حسین لاچینی

 

البته همانطور که متوجه شدید در تصویر بالا یک کانکتور مادگی در سمت راست ماتریس LED من نصب کردم. دلیل وجود این کانکتور برنامه ریزی مستقیم میکرو کنترلر در حین کار مدار است. با این کار من دیگر نیازی به جابجا کردن میکروکنترلر و قرار دادن آن در پروگرمر نداشتم و مراحل تست برنامه را به سرعت انجام میدهم.

حال نوبت به توضیح برنامه هست. من برنامه این میکرو را به زبان بیسیک نوشتم و از نرم افزار BASCOM-AVR استفاده کردم.

جهت تهیه نرم افزار BASCOM-AVR، اینجا کلیک کنید.

 

$regfile = "m8def.dat"
$crystal = 8000000

همانطور که میدانید، دستوراتی که با علامت "$" در BASCOM آغاز میشوند، جزو دستورات کمپایلر به حساب می‌آیند. و در زمان کمپایل کدی را تولید نمیکنند. دو دستور فوق نیز همینگونه هستند. در دستور اول نوع میکرو برای کمپایلر تعریف میشود که در اینجا ATmega8 میباشد و در دستور بعدی فرکانس کریستال بر حسب هرتز مشخص میشود.در این برنامه مقدار فرکانس تعریفی هشت مگاهرتز است. توجه داشته باشید که من در مدار تابلو روان خود، از کریستال خارجی استفاده نکردم. لذا این دستور تعیین کننده فرکانس اسیلاتور داخلی میکروکنترلر میباشد.

 

Config Portb = Output
Config Portd = Output

در دو دستور فوق پورت های B,D بعنوان خروجی پیکربندی گشته‌اند. من در این مدار تابلو روان از پورت B برای راه اندازی و کنترل سطرها و از پورت D جهت راه‌اندازی ستون‌ها استفاده کرده‌ام.

 

Dim Row As Byte
Dim Scan As Byte

در این دو دستور من دو متغییر از نوع بایت تعریف کردم. متغییر  Row  جهت شمارش سطرها و متغییر Scan  جهت تهیه سیگنال جاروب در سطرها استفاده میشود.

 

بعد از موارد فوق  در برنامه، به حلقه اصلی برنامه میرسیم. جهت ساخت این حلقه از دستور Do-Loop استفاده شده و بدلیل عدم ذکر هیچگونه شرطی در این دستور، دستورات موجود در بدنه این حلقه به تعداد بینهایت بار اجرا میگردند.

 

Scan = &B11111110

در ابتدای حلقه  Do-Loop متغییر Scan، مقدار دهی اولیه میشود تا سیگنال مورد نیاز جهت فعال نمودن سطر نخست تولید گردد. با توجه به ساختار ماتریس LED مورد استفاده در این تابلو روان ( اتصال کاتد LED های موجود در یک سطر به یکدیگر ) جهت فعال سازی یک سطر باید پین مربوط به آن سطر در میکرو صفر شود و سایر پین های مربوط به دیگر سطرها، یک شوند. همانطور نیز که مشاهده کردید در دستور فوق نیز بیت نخست متغییر Scan نیز صفر شده که مربوط به سطر اول ماتریس است و سایر بیت‌ها نیز یک شده‌اند. در نتیجه فقط سطر اول فعال خواهد شد و سایر سطرها غیر فعال هستند.

 

در ادامه برنامه به حلقه For-Next میرسیم. متغییر  Row در این حلقه با  صفر مقدار دهی اولیه میشود و اجرای دستورات حلقه تا رسیدن  این متغییر به عدد 6 تعریف شده. لذا تعداد دفعات اجرای دستورات درون حلقه 7 بار خواهد بود. درواقع ما در درون این حلقه یک بار کامل کل سطرهای ماتریس را که هفت عدد میباشد جاروب میکنیم.

 

    For Row = 0 To 6
        Portb = Scan
        Rotate Scan , Left
        Portd = Lookup(row , Gelayof)
        Waitus 20
        Portd = 0
    Next Row

در اولین دستور در حلقه For-Next  مقدار متغییر Scan در پورت B میکروکنترلر قرار میگیرد. تا سطر مورد نظر در ماتریس فعال شود. در دستور بعدی متغییر  Scan به اندازه یک بیت به سمت چپ شیفت چرخشی داده میشود. با این شیفت صفر موجود در این متغییر به سمت چپ منتقل شده و جای آنرا یک بیت یک پر میکند. بعنوان مثال در نخستین بار اجرای این دستور متغییر Scan از مقدار 11111110 به مقدار 11111101 تغییر میکند و در شیفت بعدی به 11111011 تا اینکه بعد از هفتمین شیفت بصورت 10111111 در می‌آید. که در هفتمین مرحله در واقع بیت هفتم، صفر شده است که باعث فعال گشتن سطر هفتم ماتریس خواهد شد.

در این برنامه من قصد نمایش حرف A را داشتم، لذا جدولی با نام Gelayof در برنامه تعریف کردم .همانطور نیز که در زیر مشاهده میکنید، جهت ذخیره اطلاعات مربوط به حرف A من از هفت بایت استفاده نمودم و اطلاعات مربوط به هر سطر را در یک بایت قرار داده‌ام. از طرفی چون در این مدار پهنای ماتریس LED، پنج است فقط از پنج بیت اول هر بایت استفاده شده و سه بیت با ارزش آن صفر شده‌اند. شما بنابر نیاز خود میتوانید با تغییر دادن وضعیت بیتها به نمایش هر شکل و یا کاراکتری بپردازید.

Gelayof:
Data &B00000100
Data &B00001010
Data &B00010001
Data &B00010001
Data &B00011111
Data &B00010001
Data &B00010001

 

حال اطلاعات این جدول مرحله به مرحله و سطر به سطر خوانده شده و در پورت D قرار میگیرد.این عمل توسط دستور Lookup در برنامه صورت میگیرد. در این دستور بایت مورد نظر ( اطلاعات سطر مورد نظر ) توسط متغییر Row  تعیین میشود. بعد از قرار دادن اطلاعات مربوط هر سطر در پورت D به اندازه 20 میکرو ثانیه این اطلاعات در پورت نگاه داشته  میشود تا LED های موجود در آن سطر روشن بمانند و اثر آن در چشم بیننده باقی بماند. سپس پورت D صفر میشود و اعمال فوق مجددا جهت سطر بعدی تکرار میگردد.

بعد از هر بار جاروب کامل تمامی سطرها، کنترل برنامه از حلقه For-Next خارج شده و مجددا متغییر Scan مقدار دهی اولیه شده تا برای جاروب مجدد آماده گردد. بله به همین سادگی شما یک نمونه ساده از تابلو روان را ساختید!

 

متن کامل برنامه را بصورت یکجا در زیر آورده شده است.


'*********************************************
'* This Program Writing By : Hossein Lachini *
'* This, Displyed "A" on the Signe Board     *
'* For to get more details visit :           *
'*                
www.HLachini.com          *
'* Contact to me by :
eLachini@Gmail.com     *
'*********************************************

$regfile = "m8def.dat"
$crystal = 8000000

Config Portb = Output
Config Portd = Output

Dim Row As Byte
Dim Scan As Byte


Do
    Scan = &B11111110
    For Row = 0 To 6
        Portb = Scan
        Rotate Scan , Left
        Portd = Lookup(row , Gelayof)
        Waitus 20
        Portd = 0
    Next Row
Loop
End 'end program

Gelayof:
Data &B00000100
Data &B00001010
Data &B00010001
Data &B00010001
Data &B00011111
Data &B00010001
Data &B00010001

در این بخش من فایل های مورد نیاز شما را جهت، ساخت تابلو روان برای دانلود قرار دادم. این فایلها به صورت یک فایل واحد با فرمت Zip فشرده سازی شده‌اند و عبارتند از :

 

- فایل شماتیک طراحی شده در نرم افزار Proteus : این شماتیک در دو برگه (Sheet) طراحی شده در برگه نخست شماتیک مربوط به مدار میکروکنترلر ATmega8 قرار دارد و در برگه دوم شماتیک ماتریس LED قرار گرفته است.

جهت تهیه نرم افزار Proteus ، اینجا کلیک کنید.

 

- فایل برنامه تابلو روان، که در نرم افزار BASCOM نوشته شده است. 

جهت تهیه نرم افزار BASCOM-AVR ، اینجا کلیک کنید.

 

- فایل هگز (Hex) برنامه تابلو روان جهت پروگرم کردن میکروکنترلر ATmega8.

 

Í

جهت دانلود فایلهای فوق اینجا کلیک کنید.

حجم فایل : 10.8 کیلوبایت

فرمت فایل Zip

منبع :hlachini.com

دوستان سلام  .
. به همراه پروژه فايل پروتيوسش هم هست .



اين لينك برنامه نوشته شده به زبان ASM :

http://www.4shared.com/file/510218/2ae610b2/watch.html

دوستان عزيز اين هم همين پروژه هست فقط به زبان C نوشته شده و با پروتئوس و فرانكلين شبيه سازي شده :

http://www.4shared.com/file/664254/fceaa074/cwatch.html

اميدوارم مفيد باشه  .

عوامل موثر در برق گرفتگی

عوامل موثر در برق گرفتگی

شدت جريان

شدت جريان در برق گرفتگي عامل اصلي و مخاطره آميز مي باشد. به عبارت ديگر، عامل مرگ مصدوم شدت جريان مي‏باشد. جريان برق با شدت دو ميلي آمپر فقط لرزش خفيفي در بدن ايجاد مي‏كند و جريانهاي بالاتر از نه ميلي آمپر سبب بروز شوك زودگذر در سطح بدن مي‏شود و در جريانهاي بالاتر از سي ميلي آمپر خطر مرگ انسان را تهديد مي‏كند. بطور كلي مقدار جرياني كه از بدن عبور مي كند، بستگي به عوامل زير دارد:

  • پتانسيل (ولتاژ) برقي كه شخص در معرض آن قرار گرفته است.
  • شرايط عايق بودن مكاني كه حادثه در آن محل اتفاق افتاده است.
  • مقاومتي كه پوست يا لباس شخص يا مجموعه آنها از خود نشان مي‏دهند.
  • محل تماس بدن با جسم هادي.
  • فشار و ميزان سطح تماس بدن با جسم هادي.

مسير جريان برق

 وقتي جريان برق وارد بدن مي‏شود، مسير خود را از راهي كه كمترين مقاومت را دارد، انتخاب مي‏كند و از نقطه‏اي نزديك اتصال به زمين خارج مي‏شود. اين ورود و خروج سبب از بين رفتن بافتها و ضايعات شديد مانند از بين رفتن عضو و حتي مرگ مي‏شود. بطور خلاصه جريان برق ممكن است از دست چپ به دست راست و بالعكس ، از دست راست به دست پاي راست يا چپ، از دست چپ به پاي چپ يا راست و يا از پاي راست به چپ و بالعكس و يا از ميان سيستم عصبي مركزي عبور كند، در هر حال اگر جريان برق به طريقي از بدن عبور كند كه قلب در مسير آن قرار گيرد، اين بدترين و مخاطره‏آميزترين حالت براي مصدوم مي‏باشد.

نوع جريان

در برق گرفتگي نوع جريان نيز بسيار مهم است. جريان برق متناوب خطرناك‏تر از جريان برق مستقيم است. زيرا جريان متناوب باعث انقباض دايمي عضله شده و قطع جريان وصل شده به بدن طولاني مي‏شود و در نتيجه آسيب وارده نيز تشديد مي‏شود. البته در ولتاژهاي بالا، جريان مستقيم اثر تخريبي بيشتري دارد و چون قوسهاي الكتريكي جريان مستقيم سوزانده تر است بنابراين شدت سوختگي در جريان مستقيم به مراتب بيشتر از جريان متناوب است. از جمله منابع برق مستقيم مي‏توان از باطري‏ها ، شارژرها و خازنها نام برد.

مقاومت بدن

با توجه به عناصر مختلف تشكيل دهنده بافتهاي بدن، عبور جريان برق از آنها حرارتهاي مختلف و در نتيجه ضايعات متفاوتي را ببار مي‏آورد. مقاومت بافتهاي بدن به ترتيب عبارتند از: استخوان ، چربي ، تاندون ، پوست ، عضله ، عصب و عروق خوني. به عبارت ديگر استخوان بالاترين مقاومت و مايعات داخل رگها كمترين مقاومت را دارند. پوست بدن نيز مقاومتهاي مختلفي نسبت به جريان برق دارد. هر چه پوست ضخيم تر و جثه فرد بزرگتر باشد، مقاومت بدن نيز بيشتر خواهد بود و هر چه پوست مرطوبتر باشد، مقاومت آن كمتر مي‏شود. مي‏توان مقاومت بدن را بين 500 تا 1000 اهم در نظر گرفت. بنابراين اگر مثلاً از دو دست ولتاژ 220 ولت بگذرد، جرياني با شدت 440 تا 220 ميلي ‏آمپر از بدن عبور خواهد كرد كه خطرناك است.

جريان قوي يا ولتاژ بالا

جريانهاي قوي سبب انقباضات عضلاني شديد، بيهوشي شديد، بيهوشي فوري، فلج تنفسي و سوختگي‏هاي شديد مي‏شود ، انقباضات عضلاني گاهي سبب پرتاب مصدوم و در نتيجه شكستگي استخوان مي‏گردد. همچنين ولتاژ زياد موجب ايجاد قوس الكتريكي و حرارتي معادل 2500 تا 4000 درجه سانتيگراد مي‏شود كه حاصل آن گاهي ذغال شدن يك عضو و حتي تمام بدن مي‏باشد. بنابراين در حوالي سيستم‏هاي انتقال انرژي برق با ولتاژ زياد، خطر ايجاد قوس الكتريكي و سوختگي فوق‏العاده شديد وجود دارد. در ضمن حتي در مواردي كه عبور جريان برق قطع مي‏شود، بلافاصله نبايد به مدار نزديك شد، زيرا اثر “خازني“ مدار مي‏تواند با تخليه الكتريكي خود، سبب قوس الكتريكي شده و صدماتي را ببار آورد.

منبع :ml.blogfa.com

ابررساناهاي دماي بالا

 

ابررساناهاي دماي بالا

زمينه اي جديد در علم فيزيك آغاز شد هنگامي كه در 27 ژانويه 1986 ميلادي، Bednorz و Mueller يك افت مقاومت تيز را در La2-mBamCuO4 در دماي حدود 30 درجه ي كلوين مشاهده كردند. آن ها مقاله اي در اين باره به يكي از روزنامه هاي معتبر اروپائي، ZeitSchrift fur Physik فرستادند و مطالعه ي خود را برروي اين ماده ي جديد ادامه دادند تا اطمينان حاصل كنند كه تغيير مقاومت ناگهاني، تبديل به يك حالت ابررسانايي بوده. تا ماه اكتبر، آن ها اثر مايزنر (The Meissner Effect) را مشاهده كرده بودند ، بنابراين يك ماده ابررساناي جديد را به ثبت رساندند. نتايج آن ها در دنيا پخش شد، يك ماه بعد، Tanaka و همكاران وي در توكيو نتايج Bednorz-Muller را تأييد نمودند (يك تأييديه در يكي از روزنامه هاي ژاپني چاپ شد) در حالي كه كار آن ها در پكن توسط Zou و همكارانش پشتيباني و حمايت شد. (كار آنها در دسامبر در يكي از روزنامه ها توضيح داده شد.) در ماه بعد، در نتيجه ي يك تلاش همكارانه بين Paul Chu از دانشگاه هوستون و Mang-Kang Wu از دانشگاه آلاباما، عضو جديدي از خانواده مواد ابررساناهاي دما بالا كشف شد ، YBa2Cu3O7 كه داراي بالاي 70 درجه ي كلوين بود. بنابراين فقط در طي يك سال از كشف اصلي، دماي انتقال به حالت ابررسانايي افزايش سه برابر داشت. و واضح بود كه انقلاب ابررسانا ها هنوز شروع شده است. يك جشن براي بوجود آمدن اين فصل در علم فيزيك طي يك جلسه در نيويورك توسط انجمن فيزيك دانان آمريكايي در يك بعد از ظهر يكي از روزهاي مارس 1987 برگزار شد. اين جشن 3000 شركت كننده داشت و 3000 نفر نيز اين جشن را از طريق تلويزيون مشاهده مي كردند ...

در طول شش سال بعد، چند خانواده ي ديگر از ابررسانا ها كشف شدند، كه شامل سيستمهاي مبني بر -Tl و -Hg مي باشند، كه به ترتيب داراي حداكثر 120 كلوين و 160 كلوين مي باشند. همگي آنها يك ويژگي كه موجب روي دادن ابررسانايي دماي بالا بود، داشتند، وجود پلين هاي (planes) شامل اتم هاي O و Cu ي كه جدا شده بوسيله ي مواد پل كننده اي كه به عنوان حامل بار عمل مي كنند هستند. در طي اين مدت، حدود چند هزار مقاله در رابطه با ابررسانا ها منتشر گشت (و در زمان حاضر هم منتشر مي شود) بديهي گشت كه ابررسانايي دماي بالا وابسته به مسائل بزرگ فيزيك بسياري در طول دهه ي گذشته ي اين قرن بود. حداقل چهار دليل براي علاقه ي شديد به بالا وجود دارد : يك علاقه ي علمي ذاتي و باطني، طبيعت انتقال نظم و ترتيبي، (اين به حدود جدا كننده ي دانشمندان و شيمي دان هاي مواد از طريق فيزيكدان هاي نظري و تجربي مي رسد) ؛ كاربردهاي بالقوه براي مواد ي كه دردماهاي بالاتر از 77 كلوين (دمايي كه نيتروژن مايع مي شود) به عنوان ابررسانا عمل مي كنند، كاربردهايي كه مي توان در سيستم هاي تلفن سلولي اعمال كرد، خطوط انتقال ابررسانايي، ماشين هاي MRI استفاده كنند از مغناطيس هاي بالا، ميكروويو هاي استفاده كننده از مواد ابررساناي جديد، سيستم هاي ابررسانا/ نيمه رساناي هيبريدي؛ و در آخر پيدا كردن ابررساناي دماي اتاق.

برخي مشخصه ها و خواص ابررسانا هاي جديد عبارتند از اينكه آن ها سراميك، و اكسيد هاي ورقه ورقه مي باشند كه در دماي اتاق فلزات ضعيف و بي ارزشي هستند، و مواد متفاوتي براي كار كردن هستند. شامل كمي حامل بار در مقايسه با فلزات معمولي هستند، و خواص انيسوتوروپيك (Anisotropic) الكتريكي و مغناطيسي هستند كه بطور قابل ملاحظه اي حساس به محتواي اكسيژن مي باشند. در حالي كه، نمونه هاي ابررساناي مواد 1-2-3 ، Yba2Cu3O7 ، را يك دانش آموز دبيرستاني نيز مي تواند در يك اجاق ميكروويو توليد كند، كريستال هاي يكتاي داراي درجه ي خلوص بالا براي تشخيص خواص فيزيكي ذاتي موادي كه ساختن آن ها به طور خيلي زيادي سخت است، لازم است.

در ادامه ي يك دهه كار، يك وفاق عمومي بر سر اين موضوع وجود دارد كه رفتار تحريكات ابتدائي در پلين هاي (planes) ، Cu-O يك كليد براي درك خواص حالت عادي اين ابررساناها ارائه مي دهد، و اينكه آن خاصيت غير حالت عادي شبيه به حالت عادي ابررساناهاي معمولي و دماي پايين مي باشند.

علاوه بر اين، اساسا هيچ يك از خواص حالت ابررسانايي ، با خواص يك ابررساناي عادي يكي نيست، كه در آن جفت كردنتئوري BCS در حالت خط واحد اتفاق مي افتد و شكاف انرژي ذرات quasi در دماهاي پائين و ايزوتپريك، هنگامي كه يكي حول سطح فرمي حركت مي كند، محدود مي باشد. علي رغم اين حقيقت كه چيزي نسبتا جديد و متفاوت نياز است تا رفتار حالت عادي را درك كنيم، يك توافق و اجماع وجود دارد كه تئوري BCS ، اگر بطور مناسبي تغيير يابد، يك توضيح راضي كننده براي انتقال به حالت ابررسانايي و خواص مواد در آن حالت، مي دهد .

يك توافق تقريبي همچنين در رابطه با اجزاي سازنده ي پايه ي لازم براي درك ابررساناهاي دماي بالا وجود دارد. آن ها را مي توان به صورت زير خلاصه كرد :

عمل ابتدا در پلين هاي Cu-O رخ مي دهد، پس در تخمين اول، براي متمركز كردن هم توجه نظري و هم عملي روي رفتار تحريكات پلانار، و همچنين براي متمركز كردن بر روي دو سيستم مطالعه شده ، سيستم 1-2-3 (YBa2Cu3O7-m) و سيستم 2-1-4 (La2-mSrmCuO4) ، كفايت مي كند.

در دماهاي پائين هر دو سيستم عايق هاي آنتي فرو مغناطيس مي باشند با يك آرايه ي محلي +Cu2 كه علامت آن در داخل شبكه متناوبا عوض مي شود .

شخصي سوراخ هايي را بر روي پلين هاي Cu-O سيستم 1-2-3 با تزريق اكسيژن ايجاد مي كند، براي سيستم 2-1-4 اين كار با تزريق استرونتيوم انجام مي گيرد. سوراخ هاي حاصل روي مقر پلانار اكسيژن ، با اسپين هاي نزديك +Cu2 پيوند پيدا مي كنند، و حركت را براي ديگر اسپين هاي +Cu2 آسان مي سازد، و در روند، نابود كردن همبستگي هاي AF طولاني برد در عايق.

اگر كسي حفره هاي كافي را ايجاد كند، سيستم حالات پايه ي خود را از يك عايق به يك ابررسانا تغيير مي دهد.

در حالت عادي مواد ابررسانا ، اسپين هاي +Cu2 سيار، اما محلي يك مايع فرمي غير مرسوم را تشكيل مي دهند ، با اسپين هاي quasiparticle هاي نشان دهنده ي ارتباطات AF قوي، حتي براي سيستم هاي در سطح تخدير كه از حدي كه ماكزيمم مي باشد، تجاوز مي كند ، موادي كه با نام فرا-تخدير شناخته مي شوند. اگر چه هيچ توافقي بين تئوريسين ها بر سر اين كه چگونه يك توضيح نظريه اي داراي جزئيات براي curpate ها ارائه كنند. راهكرد هايي كه براي اينكار امتحان شد، را مي توان به از پايين به بالا- يا از بالا به پايين رده بندي كرد. در راهكرد از بالا به پائين، يكي مدلي را كه از قبل وجود داشته را انتخاب مي كند و راه حل هايي براي انتخاب هاي ديگر پارامترهاي مدل را توسعه مي دهد ، سپس تست مي كند كه آيا اين راه حل به نتايج منطبق بر شواهد و تجربيات رسيده اند يا نه. در يك راهكرد از پائين به بالا، يك از نتايج تجربي آغاز مي كند و تلاش مي كند تا يك توضيح پديده اي از يك زير مجموعه از نتايج تجربي را بدست آورد. سپس چند آزمايش ديگر را متناسب با توضيح بدست آمده انجام مي دهد ، با ترتيب ميكروسكوپي براي هر آزمايش، تا اينكه به نتايج مورد انتظار از محاسبات و مشاهدات دست بيابد. و فقط آن وقت، بدنبال يك مدل هميلتوني كه راه حلش ممكن است تئوري ميكروسكوپي كامل را ارائه دهد، بگردد و جستجو كند. Jonh Bardeen از اين راهكرد دوم براي كار كردن بر روي ابررساناهاي عادي و مرسوم استفاده كرد ، و در دانشگاه اوربانا از روش و راهكرد او براي كار برروي ابررساناي دماي بالا استفاده كردند.

منبع : دانشنامه رشد

huppa.com

دانشمندان با محقق ساختن ایده ساخت ترانزیستورهای ارگانیکی گام دیگری به سوی عملی کردن ایده بزرگتری به نام « کاغذ الکترونیکی» برداشتند.

محققان دانشگاه های استنفورد و کالیفرنیا نشان دادند، ترانزیستورهای ارگانیکی تک کریستالی می توانند با استفاده از تکنیک جدیدی به صورت انبوه تولید شوند.

در حال حاضر ترانزیستورهای ارگانیکی با عملکرد بالا، به صورت دست ساز تولید می شوند که از این رو استفاده آنها در تجهیزات مختلف الکترونیکی به ندرت روی می دهد.

نان بائو از اساتید برجسته مهندسی شیمی در این خصوص گفت: فرآیند جدید صورت گرفته از سوی دانشمندان برای نخستین بار نشان داد که تک کریستال های ارگانیکی دارای قابلیتی هم چون الگو برداری شدن در سطحی وسیع بدون نیاز به دست چین شدن و ساخت نمونه جدید از آنهاست. نتایج تحقیقات این دانشمندان در شماره اخیر نشریه نیچر به چاپ رسیده است.

اکنون این دانشمندان روش نوینی برای چاپ الگوهای مختلف ترانزیستورها بر روی سطوحی هم چون ویفرهای سیلیکنی و پلاستیک های قابل انعطاف ارایه کرده اند.

این روش با کار گذاشتن الکترودهایی بر روی سطوح یاد شده در هرجایی که نیاز به کارگذاشتن ترانزیستور احساس شود، آغاز شده و در ادامه با تولید الگویی ساخته شده از پلیمری به نام polydimethylsiloxane که در حقیقت پلیمر سیلیکنی رایجی به حساب می آید، ادامه می یابد.

به دنبال این مرحله، محققان این الگو را با استفاده از عامل کریستالی به نام octadecyltriethoxysilane پوشانده و در پایان تبخیر این ماده کریستالی ارگانیکی موجب رشد تک کریستالها در مقیاس انبوه می شود. در نهایت نیز ترانزیستور ارگانیکی زمانی شکل واقعی خود را پیدا می کند که این کریستالها با الکترودها هم مرز شوند.

براساس گزارش «سنت نیوز» محققان در آزمایشان خود در نقطه ای به مساحت ۸۰۰ میلیونیوم اینچ مربع چنین فرآیندی را عملی کردند.

اکنون این امیدواری شکل گرفته که درآینده ای نزدیک انبوهی از کاغذهای الکترونیکی با قابلیت های گوناگون ساخته شوند.

 

منبع: خبرگزارى مهر

نانو الکترونیک

نانو الكترونيك

در سال 1956 گوردون مور بنيان‌گذار اينتل تحليلي ارايه كرد كه بر طبق آن هر 18 ماه تعداد ترانزيستورهاي بكار رفته در ريزپردازهاي اينتل دو برابر مي شود كه نصف شدن ابعاد گيت ترانزيستورها با شرط ثابت بودن اندازه تراشه سيليكوني در آن مي‌تواند نتيجه اين قوانين باشد.
اين قاعده به قانون مور موسوم شد. اين نصف شدن در واقع پيام‌آور ابعاد اقتصادي بود يعني هر چه گيت كوچكتر مي‌شد ترانزيستور مي‌توانست سريعتر سوئيچ كند و درنتيجه انرژي كمتري مصرف مي‌شد و تعداد بيشتري ترانزيستور در يك تراشه سيليكون جاي مي‌گرفت. افزايش تعداد ترانزيستورها و بازدهي آنها، هزينه را كاهش مي‌دهد بنابراين مقرون به صرفه‌تر اين بود كه هر ترانزيستور تا حد امكان كوچكتر شود، اين كوچك‌سازي بالاخره در نقطه‌اي متوقف مي‌شد بنابراين براي ادامه رشد صنعت الكترونيك بايد به فكر فناوريهاي جايگزين بود، فناوري كه مشكلات گذشته را حل كرده و توجيه اقتصادي داشته باشد و اينبار نانو تكنولوژي بود كه توانست به كمك الكترونيك بيايد و فناوري الكترونيك مولكولي يا همان نانو‌الكترونيك بنا نهاده شد.
نانو تكنولوژي يك رشته وابسته به ابزار است ابزارهايي كه به مرور در حال بهتر شدن است نانو تكنولوژي و شاخه‌هاي كاربردي آن مانند نانوالكترونيك درواقع توليد كارآمد دستگاهها و سيستم‌ها با كنترل ماده در مقياس طولي نانو است و بهره‌برداري از خواص و پديده‌هاي نوظهوري است كه در اين مقياس توسعه يافته است.
صنعت الكترونيك امروزي مبتني بر سيليكون است سن اين صنعت به حدود 50 سال مي‌رسد و اكنون به مرحله‌اي رسيده است كه از لحاظ تكنولوژيكي، صنعتي و تجاري به بلوغ رسيده است. در مقابل اين فناوري، الكترونيك مولكولي قرار ارد كه در مراحل كاملاً ابتدايي است و قرار است اين فناوري به عنوان آينده و نسل بعدي صنعت الكترونيك سيليكوني مطرح شود. الكترونيك مولكولي دانشي است كه مبتني بر فناوري نانو بوده و كاربردهاي وسيعي در صنعت الكترونيك دارد. با توجه به كاربردهاي وسيع الكترونيك در محصولات تجاري بازار مي‌توان با سرمايه‌گذاري و تامل بيشتر در فناوري نانو الكترونيك در آينده‌اي نه چندان دور شاهد سود‌دهي كلان محصولاتي بود كه جايگزين فناوري الكترونيك سيليكوني شده‌اند. ميل، اشتياق و علاقه مصرف‌كنندگان و نياز بازار به محصولات جديد با قابليتهاي بالا سازندگان و صنعتگران را بر آن مي‌دارد كه با سرمايه‌گذاري در اين فناوري شاهد رشد و شكوفايي اقتصادي هر چه بيشتر باشند، وليكن با توجه به اهميت نانوتكنولوژي و نيز نانو الكترونيك كه به عنوان يك شاخه كاربردي از نانو تكنولوژي مطرح است لزوم سرمايه‌گذاري كلان در درازمدت و ريسك‌پذيري و تشكيل مراكز R&D توسط دولتمردان پيش از پيش احساس مي‌شود.
براي پيشبرد فناوري نانو الكترونيك و نتيجه رساندن آن سه مرحله راهبردي پيشنهاد مي‌شود كه با پياده‌سازي اين سه‌مرحله مي‌توان نانو الكترونيك را جايگزين فناوري الكترونيك سيليكوني كرد ونسل جديدي از محصولات الكترونيكي را وارد بازار ساخت.
مرحله اول:
مولكولي در نظر گرفته مي‌شود بايد كاربردهايي ساده ارزان و غير پيچيده‌اي باشند تا اطمينان نسبي به الكترونيك مولكولي ايجاد شده و سرمايه‌گذاري‌ها به سمت آن هدايت شود و از طرفي كارايي اين فناوري ثابت شود. به بيان ساده وشفاف و مقايسه نسل جديد محصولات كه بر پايه اين فناوري جايگزين شده‌اند، توجيه كاربرد اين محصولات و ايجاد اطمينان در مصرف‌كنندگان مي‌تواند به عنوان بهترين حامي اقتصادي در اين مرحله باشد.
مرحله دوم:
توليدات اوليه الكترونيك مولكولي (نانو الكترونيك) بايد مكملي براي فناوري سيليكون باشند اينگونه نباشد كه انقلابي رااز همان آغاز و ابتدا شروع كرده و اين ادوات و فناوريهاي جديد تافته جدا بافته باشد و هيچ ربطي به فناوري سيليكوني نداشته باشد زيرا فناوري سيليكوني يك صنعت جا افتاده است. پس اگر نانوالكترونيك را بتوان مكملي براي فناوري سيليكوني بكار برد شاهد پيشرفت قابل ملاحظه‌اي در اين فناوري نوپا بوده و جايگزين مناسبي براي نسل آينده محصولات الكترونيكي در نظر گرفته شده است.
مرحله سوم:
مرحله سوم مبحث كاملاً جديدي است كه اصلاً در دسترس فناوري سيليكون نبوده و نانوالكترونيك مي‌تواند بعد از طي مراحل اول و دوم به آن بپردازد، يك مثال ساده وروشن اين موضوع، نمايشگرها هستند، نمايشگرهاي متداول كاملاً سخت و غيرقابل انعطاف هستند ولي با استفاده از الكترونيك مولكولي ومولكول‌هايي كه در صفحه نمايش استفاده داشته باشد بنابر اين كابرد‌هايي وجود دارد كه از دسترس فناوري سيليكون، آن هم بخاطر جامد و كريستالي بودن ذاتي‌اش دور بوده و براي الكترونيك مولكولي قابل دستيابي است. وقتي كه نانو الكترونيك جا افتاد و وارد بازار محصولات الكترونيك شد آنگاه مي‌توان نسل جديدي از محصولات را به دست آورد كه شامل پردازندهايي 1000 مرتبه سريعتر از نوع امروزي باشند. اگر اين مرحله با موفقيت طي شود حدوداً يك دهه طول خواهد كشيد تا نسل جديد محصولات الكترونيكي مبتني بر الكترونيك مولكولي يا الكترونيك در ابعاد نانومتر (نانو الكترونيك) ظهور يابد.

بررسي امكانات موجود:
براي ساخت ابزارهاي مولكولي بايد ديد از چه چيزهايي مي‌توان استفاده كرد،‌وسايلي كه در اختيار است و تاكنون مدنظر بوده است به شرح ذيل هستند:
نانو لوله‌ها
حلقه‌هاي بنزني
پليمرها
DNA

نانو لوله‌ها:
اگر يك صفحه تخت گرافيكي مدنظر باشد و به شكلي بتوان آن را به صورت نواري در نظر گرفت و لوله كرد يك نانو لوله مفروض به دست مي‌آيد كه ساختار آن همان ساختار گرافيت بوده و يك هگزاگونال است. اين ماده در سال 1991 در ژاپن كشف شده و به علت خصوصيات جالب آن مورد توجه قرار گرفت. يك خاصيت جالب اين مواد آن است كه بر حسب اينكه در چه جهتي خم شود داراي خاصيت نيمه‌هادي و يا فلزي مي‌شود. قطر يك نانو لوله كمتر از 2 نانومتر است و از اين نانو لوله مي‌توان به عنوان يك سيم كوانتومي يا يك سيم غيرفعال استفاده كرد به عنوان مثال اين لوله مي‌تواند به عنوان يك سيم انتقال هنگام اعمال اختلاف پتانسيل از يك الكترود به الكترود ديگر عمل كند كه اين موضوع مثالي از اتصالات غيرفعال مي‌تواند باشد.
نانو لوله داراي خاصيت فلزي است اين خاصيت رسانش نه فقط در طول بلكه در عرض نانو لوله نيز وجود دارد براي حالت سيمهاي مولكولي غيرفعال، بهتر است كه نانو لوله داراي خاصيت رسانش باشد، اگر باشد، نانو لوله داراي گاف انرژي خواهد بود كه شبيه نيمه هادي خواهد شد. اگر نانو لوله كربني روي سطحي قرار داده شود و نوك STM (مولكول نانو لوله‌هاي كربني) رابه سطح آن نزديك شود، چنانچه ولتاژي را بين بستري كه نانو لوله روي آن قرار دارد و نوك STM اعمال شود جرياني عبور خواهد كرد، بر حسب مقدار جرياني كه عبور مي‌كند، مي‌توان تشخيص داد كه گاف انرژي چقدر است.

حلقه بنزني:
حلقه‌هاي بنزني به خاطر چگالي حالت بالا كه بر روي حلقه‌هاي خود دارند جانشيني براي سيمهاي كوانتومي در نظر گرفته مي‌شود.

پليمرها:
از نمونه‌هايي كه به عنوالن سيمهاي مولكولي فعال يا غيرفعال مي‌توان نام برد پلي‌تيوفن (PT) يا پلي‌انيلين است كه داخل يك سيكلود كسترين1 (CD) قرار گرفته باشد اين دو ماده در اصل پليمرهايي هستند كه به عنوان قسمتهاي هادي سيم بكار مي‌روند اين پليمرها شبيه حلقه‌ بنزني است كه به همديگر چسبيده‌اند و دو سر آن به دو الكترود طلا وصل شده است. اتصالات سيمهاي مولكلولي به الكترودهايش توسط اتم‌هاي گوگرد برقرار مي‌شود سطحي كه اين پليمر بر روي آن قرار مي‌گيرد ممكن است قسمتي از جريان را بكشد يعني اينكه يك جريان اتلافي داشته باشد براي اينكه مانع از اين جريان اتلافي شد بايد اين سيم را داخل يك حفاظ مولكولي قرار داد اين حفاظ نيز شبيه نانو لوله كربني است اما داراي قطر بسيار بزرگتر و ساختار پيچيده‌تري است لذا اين لوله مولكولي مانع عبور جريان اتلافي از ديواره‌هاي سيم و انتقال آن به سطح تماس مي‌شود.

DND:
DNA نمونه‌اي از سيم‌هاي فعال است. ساختمان DNA كاملاً شناخته شده است و به طور خودكار اين ساختمان ايجاد مي‌شود، براي توليد آن مانند پليمرها مشكلي وجود ندارد فقط بايد خواص آن مورد بررسي قرار گيرد تا متوجه چگونگي تغييرات آن شد براي اين منظور به ذكر مثالي پرداخته مي‌شود:
به منظور استفاده از DNA براي محاسبه جريان بر حسب ولتاژ، يك فاصله 8 نانومتري بين دو الكترود پلاتين مفروض مي‌شود، پس با اعمال يك ولتاژ مي‌توان جريان را محاسبه كرد.
نكته‌اي كه از شكل بالا برداشت مي‌شود اين است كه نمودار جريان بر حسب ولتاژ نموداري نامتقارن است، يعني اينكه جريان براي ولتاژي مثلاً بين 1- و 2 ولت اجازه عبور ندارد در حالي كه براي 2- و 1- جريان مي‌تواند عبور كند و اين يعني اينكه DNA مي‌تواند عمل يكسوسازي را انجام دهد. در مورد هدايت از داخل DNA سه نظريه مد نظر است، يكي اينكه DNA يك نيمه هادي با گاف خيلي بزرگ است. ديگر اينكه DNA يك نيمه هادي با گاف كوچك ونيز اينكه DNA داراي خاصيت فلزي است.
موضوع در اصل اين است كه DNA ماده بسيار پيچيده‌اي است كه شرايط محيطي به شكل بسيار زيادي مي‌تواند بر روي خواص آن تاثير بگذارد يكي از اين شرايط محيطي موثر حضور آب است، DNA‌يي كه در محيط خشك باشد با DNAيي كه در محيط مرطوب باشد بسيار متفاوت است. لذا با توجه به شرايط محلي حاكم بر DNA نمي‌توان يك نتيجه قطعي در مورد اينكه DNA فلز است يا نيمه فلز بيان كرد اما آنچه كه مسلم است اين است كه DNA يك نيمه هادي با گاف بزرگ است.
در حالت عادي يونهايي وجود دارد كه با دستكاري آنها مي‌توان خواص هدايتي DNA را تغيير داد يعني مي‌توان اميد داشت كه با افزودن يونهايي بتوان حتي آن را به فلز تبديل كرد يك نكته جالب ديگر اين است كه مي‌توان از DNA به عنوان قالب استفاده كرد و در مكانهاي مشخصي روي DNA يكسري فلزات را قرار داد تا يك سيم فلزي دور DNA ايجاد شود. در اين حالت DNA به عنوان قالبي براي پايدار نگه داشتن سيم مورد نظر استفاده قرار گيرد. بررسي پايداري DNA با توجه به شرايط محلي حاكم بر سيستم نيز امكان‌پذير است. هدايت DNA در دو مسير مشخص صورت مي‌گيرد. وقتي DNA را به عنوان هدايت‌كننده جريان در نظر گرفته شده يك بار مي‌تواند در جهت موازي محورش جريان را عبور دهد و يك بار نيز مي‌تواند عمود بر محورش جريان را عبور دهد، حال براي هدايت در جهت عمود بر محور مي‌توان اينگونه فرض كرد كه وقتي نوك STM (مولكول نانو لوله‌هاي كربني) در بالاي DNA قرار مي‌گيرد جريان به شكل عمود از جفت‌هاي بازي كه وجود دارد وارد نوك STM مي‌شود اين كار مي‌تواند هم به عنوان آزمايشي براي ديدن تصوير DNA و هم براي اندازه‌گيري عبور جريان جفت‌هاي بازي به كار رود ومي‌توان بدين شكل رسانش AT و CG (جفت‌هاي بازهايي كه در مارپيچ DNA وجود دارند) را محاسبه كرد.
DNA مي‌تواند يك ابزار در توليد محصولات نانو‌الكترونيك كاربرد‌هاي فراواني داشته باشد، با توجه به اينكه DNA به طور طبيعي در طبيعت و سلولهاي موجودات زنده وجود دارد مي‌توان از آن در توليد ديگر محصولات نانوتكنولوژي همانند نانوموتورها سود جست. كنترل و پايداري DNA نيز با توجه به خواص ذاتي و محلي آن امكان‌پذير بوده و جاي تامل و بحث دارد.

نتيجه‌گيري:
1ـ آنچه كه مسلم است، الكترونيك مولكولي داراي آينده‌اي درخشان است و با آهنگ بسيار سريعي در حال رشد و تكامل است. از اين رو توجه خاصي را مي‌طلبد.
2ـ نتايج عملي رشد و توسعه شاخه‌هاي نانوتكنولوژي مانند نانوالكترونيك سبب ساخت تجهيزاتي خواهد شد كه در مقايسه با گذشته اختلاف فاحش داشته و نسل كاملاً جديدي با قابليت‌هاي منحصر به فرد خواهد بود.
3- نانو لوله‌ها و DNA به عنوان دو ابزار كارآمد در توليد محصولات نانوالكترونيك از اهميت خاصي برخوردارند، وليكن در اين ميان DNA به دليل داشتن خواص محلي و وجود آن در بدن موجودات زنده از اهميت بيشتري برخوردار است.
4- با توجه به دو شاخص تعداد مقالات علمي و اختراعات ثبت‌شده، در نانو تكنولوژي مي‌توان نتيجه گرفت كه اين شاخصها مي‌توانند اطلاعاتي مفيد در مورد تكامل اين فناوري را نشان دهند و براي طرح برنامه‌ها و استراتژيها مناسب باشند.
5- نانوتكنولوژي و شاخه‌هاي كاربردي آن در علوم مختلف مانند نانوالكترونيك به عنوان پديده‌هايي نوظهور هنوز قبل از تجاري سازي محصولاتشان، احتياج به پيشرفت در هر دو زمينه علمي و تكنولوژيكي را دارد. با توجه به اينكه هم‌اكنون برخي از محصولات اين فناوري در بازار وجود دارد پيش‌بيني اينكه كداميك از محصولات آينده بهتري دارند (از نظر رقابتي) نياز به بررسي بيشتر شاخصهاي اين فناروي در بخشهاي صنعت و زيرمجموعه‌هاي اين فناوري دارد.
6- با توجه به اهميت فناري نانو و كاربردهاي روزافزون آن در دنيا بايد تحقيقات دانشگاهي و دولتي تواماً صورت گيرد و به علت اينكه اهداف تحقيقاتي اين فناوري پايه‌اي و درازمدت است بخش صنعت توان سرمايه‌گذاري بر روي تحقيقات درازمدت و مخاطره‌آميز را نداشته، از اين رو حمايت دولتمردان به عنوان پشتوانه‌اي مهم در اين فناوري خواهد بود علاوه بر اين ايجاد ساختارهاي جديد در دانشگاهها و آزمايشگاههاي ملي براي توسعه اين فناوري لازم است نيازمنديها و انتظارات فناوري نانو و شاخه‌هاي كاربردي آن در علوم مختلف مانند نانوالكترونيك فراتر از تمامي چيزهايي است كه مقررات سنتي دانشگاهي، آزمايشگاهي ملي و يا حتي تمام صنعت مي‌تواند فراهم كند و به خاطر همين مشكلات است كه يك حركت و انديشه ملي پايه‌ريزي و با حمايت دولتي در زمينه اين فناوري حياتي به نظر مي‌رسد.
با توجه به پتانسيل‌هاي موجود ايران در زمينه مهندسي الكترونيك، لزوم يك مركز R&D دولتي كه به حمايت محصولات توليدي الكترونيكي صنايع پرداخته و بتواند در آينده بازار تجاري محصولات نانو‌الكترونيك را به دست بگيرد به شدت حس مي‌شود و اگر تدبيري انديشيده نشود متاسفانه بايد گفت كه همانند گذشته بايد مصرف‌كننده خوبي بوده و شاهد سودهاي كلان تجاري ديگر كشورها و سرمايه‌گذاران بود.

منبع: ماهنامه صنعت برق

نرم افزار مطلب

اساس عملکرد Matlab

     اساس عملکرد اين نرم افزار ماتريسها مي باشند . در اصل اين نرم افزار با عمليتهاي ماتريسي و محا سبات ۱۰۰ در صد عملي نتايج عملي و مفيدي به ما ميدهد . پس به شما توصيه مي کنم قبل از کار با اين نرم افزار کمي با ماتريسها آشنايي پيدا کنيد .

تعريف متغيرها :

         در نرم افزار Matlab  تغيير متغير ها به سادگي و به صورت زير انجام پذير مي باشد :

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

در اصل عبارت بالا يک متغير ( آرايه ) با ۴ درايه ي افقي و ۴ درايه ي  عمودي تعريف مي کند .

پس از انجام اين عمل و زدن کليد Enter  شما با عکس العمل زير مواجه مي شويد :

A =
    16     3     2    13
     5    10    11     8
     9     6     7    12
     4    15    14     1

 در صورتي که مايليد تيجه ي عمل خود را نبينيد مي توانيد از يک ";" در آخر عمليات خود استفاده کنيد يعني :

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1];

براي دسترسي به هر آرايه مي توانيد از قاعده ي زير کمک بگيريد :

A = (3,4);

 که در مثال بالا برابر ۱۲ مي باشد .

               براي اينکه به يک آرايه مثلاْ از 0 تا ۲۰ و ۲ تا ۲ تا عدد بدهيد از قاعده ي زعر استفاده مي کنيد :

A = 0:2:20

 

و جواب شما يک ماتريس ۱ در ۱۰ و با اعضاي زوج ۰ تا ۲۰ است .

آشنایی با محیط MATLAB

با اجرای MATLAB پنجره ای مطابق شکل باز می شود . روي شکل کاربرد تمام اين منو ها  توضيح داده شده است . به شکل زير توجه کنيد :

مقدمات کار با matlab :

در matlab اعمال ساده ریاضی را به راحتی می توان انجام داد. کافی است عبارت مورد نظر را در پنجره Command تایپ کنید:

<< 2+6/2

ans=

       5

و یا می توان مقادیر را در چند متغیر ذخیره کرده و روی متغیرها عملیات محاسباتی را انجام دهیم.

در نام گذاری متغیرها باید به این نکات توجه کرد:

  • matlab نسبت به حروف بزرگ و کوچک حساس است.
  • اسامی متغیرها حداکثر 31 کاراکتر می تواند باشد.
  • اسم متغیر نباید از کلمات تعریف شده برای matlab باشد و حتما باید با حرف شروع شود.
  • از underline در نامگذاری متغیرها می توان استفاده کرد، اما از کاراکترهای علامت و دستوری نمی توان استفاده کرد.
  • بین حروف یک کلمه نباید فاصله وجود داشته باشد.
  • تمام دستورات و عبارات کلیدی matlab با حروف کوچک نوشته می شود. بنابراین می توان اسامی آنها را با حروف بزرگ برای نام گذاری متغیرها به کار برد.

ترفند:

برای شناسایی کلمات کلیدی matlab می توان از دستور iskeyword استفاده کرد. این تابع در صورتی که عبارت یک کلمه کلیدی باشد مقدار یک و در غیر این صورت مقدار صفر را برمی گرداند:

>>iskeyword('for)

ans=

     1

>>iskeyword('keyword)

ans=

      0

در matlab متغیرهای ویژه ای وجود دارد که هریک مقادیر خاصی را در خود ذخیره می کنند:

  • ans برای ذخیره مقادیری که کاربر متغیری را برای ذخیره آنها در نظر نگرفته است.
  • pi مقدار عدد پی
  • eps کوچکترین عدد مثبت بزرگتر از صفر.( بزرگترین عددی که اگر با یک جمع شود باز هم یک را به عنوان نتیجه برمی گرداند.)
  • inf به عنوان علامت بی نهایت
  • Nan یا nan مقدار غیر عددی( نتیجه تمام عملگرها روی NaNها، NaN است.)

چند نکته:

  • اگر بخواهیم چند دستور را در یک خط بنویسیم باید از کاما بین دستورات استفاده کنیم. همچنین قرار دادن سمیکالن (;) در انتهای دستور باعث می شود محاسبات انجام شود ولی نتایج نمایش داده نشود.
  • با استفاده از کلیدهای جهتی می توانید دستورات قبلی را مرور کنید.
  • بهترین روش برای خواناتر شدن یک برنامه استفاده از جملات توضیحی می باشد. در matlab این جملات بعد از علامت % می آید.
  • گاهی اوقات یک فرمان ممکن است آن قدر طولانی باشد که نتوان آن را در یک خط نمایش داد. برای حل این مشکل می توان در آخر سه نقطه گذاشته و ادامه دستور را در خط بعد تایپ کرد.
  • برای توقف پردازش برنامه از ctrl + c استفاده می شود.

قالب های نمایش اعداد:

در matlab اعداد با فرمت های مختلفی به نمایش در می آیند. از مهمترین آنها می توان به فرمتهای زیر اشاره کرد:

  • short:نمایش اعداد تا 4 رقم اعشار (پیش فرض matlab) 
  • short e:عدد 5 رقم با توان علمی
  • hex:در مبنای 16
  • long:نمایش اعداد تا 16 رقم
  • bank:نمایش اعداد با دقت دورقم اعشار
  • +:علامت عدد را نشان می دهد
  • rat:نمایش به صورت تقریب کسری

مثلا برای تعیین فرمت +کافی است دستور + format را در پنجره ی command وارد کرده و Enter کنید. سپس عددی را وارد کرده و نتیجه را مشاهده نمایید.

برای گرد کردن اعداد روشهای مختلفی وجود دارد، تمام این روشها را می توان در matlab یافت:

  • fix گرد کردن به طرف صفر
  • floor گرد کردن به طرف منفی بی نهایت
  • ceil گرد کردن به طرف مثبت بینهایت
  • round گرد کردن به طرف نزدیکترین عدد صحیح

مثال:

>>fix(2.30)

ans=

     2

چند دستور کلیدی در matlab:

برای اجرای هر یک از دستورات زیر آنها را در پنجره ی command تایپ کرده و Enter کنید:

date: این دستور تاریخ را نمایش می دهد.

clear:با استفاده از این دستور می توان تمام یا تعدادی از متغیرها را پاک کرد.برای مثال اگر متغیری با نام a داشته باشیم:

a<<

=a

   12

clear a<<

a<<

.'undefined function or variable 'a???

** اگر دستور clear را به تنهایی و بدون ذکر نام متغیر خاصی به کار ببریم تمام متغیرها پاک خواهند شد.

delete: با استفاده از این دستور می توان فایل های موردنظر و موجود در پوشه جاری matlab را پاک کرد.مثلا دستور زیر تمام فایلهای با پسوند p در دایرکتوری جاری را پاک می کند:

delete *.p<<

disp: مقادیر یک متغیر را بدون نمایش نام آن چاپ می کند.

clc: صفحه را پاک می کند اما در حافظه تغییری ایجاد نمی کند.

Help:همانطور که در جلسه ی دوم توضیح دادم با این دستور می توان به متن راهنمای یک دستور دست پیدا کرد.

lookfor:تفاوت این دستور با دستور help در این است که برای استفاده از help باید دقیقا نام دستور وارد کنید، اما با استفاده از lookfor نیازی به دانستن نام دقیق دستور نیست.کافی است آنچه مورد نیازتان است به صورت کلمه کلیدی وارد کنید.اما عیبی که این روش دارد این است که سرعت کمتری نسبت به دستور help دارد.

** در صورتی که بخواهیم عملیات در حال انجام matlab متوقف شود باید از کلیدهای ctrl+break استفاده کنیم.(این برای متوقف کردن جستجو در دستور lookfor هنگامی که سرعت کامپیوتر پایین باشد مناسب است.)

معرفی چند تابع:

  • abs(x)معادل |x|
  • sin(x)
  • asin(x) معادل arcsin(x)
  • asinh(x) معادل arcsinh(x)
  • exp(x) معادل ex
  • conj(x) نمایش مزدوج مختلط
  • imag(x) قسمت مختلط عدد را نمایش می دهد
  • real(x) قسمت غیرمختلط عدد را نمایش می دهد

اميدوارم که استفاده کرده باشيد . در مطالب بعدی راجع به کاربرد matlab در برق و پروژه های عملی صحبت خواهد شد . نظر یادتون نره . 

منبع :

www.prdev.com

 www bargh1.tk